

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 681 (2003) 5-11

www.elsevier.com/locate/jorganchem

Organosilicon chalcogenides with trisilane units — adamantanes and noradamantanes

U. Herzog^{a,*}, H. Borrmann^b

^a Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Germany ^b Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, D-01187 Dresden, Germany

Received 10 March 2003; received in revised form 10 April 2003; accepted 23 April 2003

Abstract

1,1,3,3-Tetrachlorotetramethyltrisilane (1b) has been prepared from Ph2MeSiCl and Me2SiCl2 via Ph2MeSi–SiMe2–SiMePh2 (1a). Reaction of 1b with Li2E (E = S, Se) furnishes the new tricyclic organosilicon chalcogenides (Me2Si)2(MeSi)4E4 (E = S (2a), Se (2b)) with adamantane structures. If a mixture of 1b and Cl2MeSi–SiMeCl2 is reacted with H2S/NEt3, (Me2Si)(MeSi)4S4 (3a), a noradamantane with a trisilane and a disilane unit is formed. The molecular structures of 2a and 3a are reported. All new compounds are characterized by NMR spectroscopy (1H, 13C, 29Si, 77Se).

© 2003 Elsevier B.V. All rights reserved.

Keywords: Trisilane; Adamantane; Noradamantane; Sulfur; Selenium

1. Introduction

Adamantane cages are a structural motif frequently observed in inorganic as well as organometallic chemistry [1].

Adamantanes-like Si4E104 – ions (E = S, Se, Te) have been observed in several chalcogenosilicates [2– 5], while silsesquichalcogenides (RM)4E6 (I; E = S, Se; M = Si, Ge, Sn) which usually adopt adamantane-like structures have been prepared starting from organotrichlorosilanes, germanes or stannanes by reactions with alkalimetal chalcogenides or other chalcogen transfer reagents [6–8].

However, in case of bulky substituents (R = tBu [9], 1,1,2-trimethylpropyl [10]), the reactions of RMCl3 (M = Si, Ge) with (NH4)2S5 or Li2E (E = S, Se) resulted in the formation of sesquichalcogenides with double-decker-like structures [(RME)2E]2 (II).

Recently, we were able to show [11] that reactions of tetrachlorodisilylmethane Cl2MeSi-CH2-SiMeCl2 with either H2S/NEt3 or Li2E (E = Se, Te) led to the

0022-328X/03/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0022-328X(03)00526-6

formation of adamantane-like cages (CH2)2(SiMe)4E4 (III; E = S, Se, Te).

The molecular structures of the three compounds revealed an increasingly distorted geometry of the adamantane cage with growing size of the chalcogen atoms as a result of the difference of the bond lengths Si–C and Si–E. Related adamantane cages with tin atoms instead of silicon and E = S, Se have (IV) been prepared by Jurkschat and coworkers [12] by the reaction of a corresponding distannylmethane with Na2E while compounds with carbon atoms at the positions of silicon (V) are known to be formed starting from β -diketones with H2S [13–15] or H2Se [16] in acid reaction mixtures (HCl, ZnCl2/HOAc).

By reaction of a 1:1 molar mixture of the tetrachlorodisilylmethane Cl2MeSi-CH2-SiMeCl2 and Cl2MeSi-SiMeCl2 with either H2S/NEt3 or Li2Se, we have also succeeded in the preparation of noradamantanes (CH2)(SiMe)4E4 (VI; E = S, Se) (Scheme 1) [11].

In the course of our investigations of the reaction products of several chlorofunctionalized trisilanes with chalcogen transfer reagents such as H2S/NEt3 or Li2E, we became interested in the nature of the reaction products of the trisilane Cl2MeSi-SiMe2-SiMeCl2 (1b).

^{*} Corresponding author. Tel.: +49-3731-394343; fax: +49-3731-394058.

E-mail address: uwe.herzog@chemie.tu-freiberg.de (U. Herzog).

Scheme 1. Structures of sesquichalcogenides (RM)4E6 of Group 14 elements (M = C, Si, Ge, Sn) and related compounds (RM)4(CH2)xE4 (x = 1, 2).

The questions arise whether it would be possible to prepare compounds of the types (Me2Si)2(MeSi)4E4 and (Me2Si)(MeSi)4E4 and whether these compounds also exhibit adamantane (or noradamantane)-like structures.

2. Results and discussion

2.1. Preparation of Me2Si(SiMeCl2)2 and Me2Si[SiMe(SBu)2]2

The starting trisilane Cl2MeSi–SiMe2–SiMeCl2 (1b) has been synthesized in three steps from Ph2MeSiCl and Me2SiCl2:

In order to compare the NMR chemical shifts of the

polycyclic target molecules with a related acyclic compound, we reacted the trisilane 1b with BuSLi and obtained an acyclic thiobutyl-substituted trisilane 1c with the same substitution pattern, i.e. the same first coordination sphere at the silicon atoms:

The NMR data of all synthesized trisilanes are given in Table 1.

2.2. Adamantanes (Me2Si)2(SiMe)4E4 (E = S (2a), Se (2b))

Reactions of the trisilane Me2Si(SiMeCl2)2 (1b) with Li2E (E = S, Se) led to the formation of (Me2Si)2(Si-Me)4E4 (2a and 2b).

The adamantane-like structure of 2a could be proven unambiguously by a crystal structure analysis. Fig. 1 shows the molecular structure, and selected bond distances and angles are given in Table 2.

All bond lengths are in the ranges of typical single bonds. Even though all angles Si-Si-Si and Si-S-Si are somewhat smaller and all angles S-Si-S are larger than the ideal tetrahedral angle of 109.5°, in contrast to the adamantane-like compounds (CH2)2(SiMe)4E4 described previously [11], the Si6S4 core represents an almost undisturbed adamantane cage. This is also evident from a comparison of the lengths of the

Fig. 1. Molecular structure of (Me2Si)2(SiMe)4S4 (2a).

Table 1 NMR data (Hz, ppm) of the trisilanes Me2Si(SiMeR2)2 (R = Ph (1a), Cl (1b), SBu (1c))

Compound	δSi	1JSiSi	δC	1JSiC	δΗ
Me2SiB(SiAMePh2)2 (1a)	A: -19.05	72.6	SiAMe: -4.24 ^a		0.441 ^b
	B : -47.23		SiBMe2: -5.03	38.6	0.276
Me2SiB(SiAMeCl2)2 (1b)	A: 32.74	95.7	SiAMe: 7.83	52.1	0.955
	B : -35.59		SiBMe2: -7.77	41.4	0.450
Me2SiB[SiAMe(SBu)2]2 (1c)	A: 14.27	80.0	SiAMe: 0.80 ^c		0.657 ^d
	B : −38.98		SiBMe2: -4.72	41.4	0.355

^a SiAPh2: 137.01 (i), 134.82 (o), 127.75 (m), 128.68 (p).

^b SiAPh2: 7.36 (o), 7.22 (m+p).

^c SC1H2C2H2C3H2C4H3: 27.0 (C1), 34.7 (C2), 22.1 (C3), 13.8 (C4).

^d SC1H2C2H2C3H2C4H3: 2.68 (C1H2), 1.65 (C2H2), 1.43 (C3H2), 0.92 (C4H2).

diagonals Z–Z and E–E (Z = SiMe2, CH2) as well as the bond angles Si–Z–Si and Si–E–Si (see Table 3). While for 2a both ratios are almost equal to unity, deviations increase for Z = CH2 with the size of the chalcogen.

The NMR data of 2a and 2b are summarized in Table 4. A comparison with the 29Si-NMR chemical shifts of the sulfur compound 2a with those of the acyclic thiobutyl derivative 1c reveals a significant high field shift of SiB despite the same first and second coordination spheres while SiA is only slightly shifted to a higher field in the adamantane 2a. This is in agreement with observations made previously for other cyclic and polycyclic organosilicon chalcogenides. The incorporation of a silicon atom into a six-membered ring is always accompanied by a high field shift of the 29Si-NMR signal [17]. In oligosilanes, this high field shift is even

Table 2 Selected bond lengths and bond angles of (Me2Si)2(SiMe)4S4 (2a)

Atoms	Bond length (Å)	Atoms	bond angle (°)
Si1-Si2	2.316(2)	Si1-Si2-Si3	103.81(6)
Si2-Si3	2.317(2)	Si4-Si5-Si6	104.09(6)
Si4-Si5	2.326(2)	Si1-S1-Si4	106.93(6)
Si5-Si6	2.321(2)	Si1-S2-Si6	108.10(6)
Si1-S1	2.144(2)	Si3-S3-Si4	107.85(6)
Sil-S2	2.145(2)	Si3-S4-Si6	106.94(6)
Si3-S3	2.145(2)	S1-Si1-S2	115.69(7)
Si3-S4	2.150(2)	S3-Si3-S4	114.93(7)
Si4-S1	2.145(2)	S1-Si4-S3	116.06(7)
Si4-S3	2.151(2)	S2-Si6-S4	113.90(7)
Si6-S2	2.148(2)	S1-Si1-Si2	108.06(6)
Si6-S4	2.143(2)	S2-Si1-Si2	109.47(6)
Sil-Cl	1.866(5)	S3-Si3-Si2	108.34(6)
Si2-C2	1.888(5)	S4-Si3-Si2	110.03(7)
Si2-C3	1.884(5)	S1-Si4-Si5	109.19(7)
Si3-C4	1.861(5)	S3-Si4-Si5	107.48(7)
Si4-C5	1.864(5)	S2-Si6-Si5	108.29(6)
Si5-C6	1.882(5)	S4-Si6-Si5	110.50(7)
Si5-C7	1.882(5)	C2-Si2-C3	111.7(3)
Si6-C8	1.865(5)	C6-Si5-C7	112.1(3)

Table 3

Geometric parameters of the adamantanes Z2(SiMe)4E4 (Z = SiMe2, CH2; E = S, Se, Te)

Parameter	Z = SiMe2;	Z = CH2;	Z = CH2;	Z = CH2;
	$\mathbf{E} = \mathbf{S}$	E = S	E = Se	E = Te
$E-E^{a}(a)$	5.13	4.97	5.30	5.78
Z–Z (b)	5.16	4.31	4.35	4.43
a/b	0.99	1.15	1.22	1.30
$\angle Si-Z-Si$ (c)	104.0	118.9	122.6	127.6
\angle Si-E-Si (d)	107.5	101.3	98.3	93.9
c/d	0.97	1.17	1.25	1.36

^a Average distance E1–E4 and E2–E3.

more pronounced for the silicon atoms not directly bound to the sulfur atoms [18].

2.3. Noradamantane (Me2Si)(SiMe)4S4 (3a)

If a 1:1 molar mixture of the trisilane 1b and 1,1,2,2tetrachlorodimethyldisilane is reacted with H2S/NEt3, a noradamantane with a trisilane and a disilane unit connected by four sulfur atoms is formed:

The NMR data of this new noradamantane 3a are given in Table 2. In comparison with the acyclic thiobutyl-substituted oligosilanes 1c and (BuS)2MeSi–SiMe(SBu)2 (δ Si: 9.1 ppm) [19] containing the same oligosilanyl units, the NMR signals of SiA and SiC in 3a are shifted by 12–18 ppm to a lower field as a consequence of the incorporation into five-membered rings.

Merely SiB of 3a, which is part of six-membered rings only, shows an NMR signal high field from the

Table 4

NMR data (Hz, ppm) of the adamantanes (Me2Si)2(SiMe)4E4 (E = S (2a), Se (2b)) and the noradamantane (Me2Si)(SiMe)4S4 (3a)

	compound	δ_{Se}	δ_{Si}	$\delta_{\rm C}$	$^{1}J_{\rm SiC}$	$\delta_{\rm H}$
2a	$Me Me Me Me Si^{A}Si^{B}Si^{A}Me Me M$	_	A: 13.2 B: -56.2 ${}^{1}J_{SiSi}$: 86.5	5.36 8.34	43.2	0.71 0.41
2b	$Me Me Me Me$ $Se Se Se Se Se$ $Me Si^{A} Si^{B} Si^{A} Me$ $Me Me Me$	-161 ¹ J _{SiSe} : 137.0	A: -1.4 B: -61.3 ${}^{1}J_{SiSi}$: 81.4	5.03 -9.33		0.88 0.42
3a	$Me Me Me$ $S Si^{C} Si^{C} Si^{N} Si^{N} Me$ $Me Si^{N} Si^{N} Me Me$	-	A: 26.2 B: -49.4 C: 25.6 ${}^{1}J_{Si^{A}Si^{B}}$: 85.0	3.3 -8.1 2.2	45.2 41.8 51.0	0.80 0.33 0.95

resonance of SiB in 1c; however, it is 7 ppm low field shifted from the signal of SiB in the adamantane 2a.

This noradamantane has also been characterized by a crystal structure analysis. The asymmetric unit contains two independent molecules with almost identical geometries. Molecule A is shown in Fig. 2. Important bond lengths and angles are summarized in Table 5. Like in 2a, the four chalcogen atoms span an almost ideal square with S–S distances of 3.48-3.56 Å and angles S–S–S between 89.6° and 90.3° .

Due to the smaller ring size, the Si–S–Si angles in 3a are in average 11.5° smaller than in 2a.

The most striking difference to the geometry of the related noradamantane (H2C)(SiMe)4S4 [11] is the bond angle Si–Si–Si of the trisilane unit which is 104.8° (average of the two independent molecules). It is almost 17° smaller than the angle Si–C–Si of the

Fig. 2. Molecular structure of (Me2Si)(SiMe)4S4 (3a), molecule A.

disilylmethane unit and results from the larger bond length Si–Si in comparison with Si–C.

3. Experimental

3.1. NMR and GC/MS measurements

All NMR spectra were recorded on a Bruker DPX 400 in CDCl3 solution and TMS as internal standard for 1H, 13C and 29Si. In order to get a sufficient signal to noise ratio of 29Si-NMR spectra for obtaining 1JSiC, 1JSiSi or 1JSiSe satellites, 29Si INEPT spectra were also recorded. 77Se-NMR spectra were obtained using an IGATED pulse program.

External Ph2Se2 (δ Se: 460 ppm [20]) in CDCl3 was used as standard for 77Se.

Mass spectra were measured on a Hewlett Packard 5971 (ionization energy: 70 eV, column: 30 m \times 0.25 mm \times 0.25 μ m, phenylmethylpolysiloxane, column temperature: 80 °C (3 min)/20 K min – 1/200 °C, flow: He 0.5 ml min – 1).

3.2. Crystal structure analyses

X-ray structure analysis measurements of 2a and 3a were performed on a Rigaku AFC7 with Mercury CCD. Crystal data of 2a and 3a as well as data collection and refinement details are given in Table 6.

For the data collection, unit cell refinement and data reduction of 2a and 3a the program package Crystal Clear [21] was used. The structures were solved using direct methods, refined using least-squares methods

Table 5 Selected bond lengths and bond angles of (Me2Si)(SiMe)4S4 (3a), molecules A and B

Atoms	Bond length (Å)	Atoms	Bond angle (°)
Si1-Si2	2.345(2)	Si1-Si2-Si3	105.11(7)
Si2-Si3	2.338(2)	Si1-S1-Si4	95.85(7)
Si1-S1	2.160(2)	Si1-S2-Si5	96.09(7)
Sil-S2	2.145(2)	Si3-S3-Si4	95.70(7)
Si3-S3	2.158(2)	Si3-S4-Si5	95.91(8)
Si3-S4	2.149(2)	S1-Si1-S2	107.89(8)
Si4-S1	2.136(2)	S3-Si3-S4	108.55(8)
Si4-S3	2.134(2)	S1-Si4-S3	112.61(9)
Si5-S2	2.145(2)	S2-Si5-S4	112.49(8)
Si5-S4	2.143(2)	S1-Si1-Si2	108.70(7)
Si4-Si5	2.359(2)	S2-Si1-Si2	109.56(8)
Si1-C1	1.855(5)	S3-Si3-Si2	108.89(8)
Si2-C2	1.860(5)	S4-Si3-Si2	109.07(7)
Si2-C3	1.881(5)	S1-Si4-Si5	105.44(7)
Si3-C4	1.848(5)	S3-Si4-Si5	105.60(7)
Si4-C5	1.844(4)	S2-Si5-Si4	104.93(8)
Si5-C6	1.841(5)	S4-Si5-Si4	105.24(7)
		C2-Si2-C3	111.6(2)0
Si6-Si7	2.343(2)	Si6-Si7-Si8	104.52(7)
Si7-Si8	2.344(2)	Si6-S5-Si9	96.32(7)
Si6-S5	2.144(2)	Si6-S6-Si10	96.31(8)
Si6-S6	2.152(2)	Si8-S7-Si9	95.90(8)
Si8-S7	2.146(2)	Si8-S8-Si10	95.88(7)
Si8-S8	2.150(2)	S5-Si6-S6	108.51(8)
Si9-S5	2.140(2)	S7-Si8-S8	108.56(8)
Si9-S7	2.145(2)	S5-Si9-S7	111.89(8)
Si10-S6	2.141(2)	S6-Si10-S8	111.39(9)
Si5-S4	2.143(2)	S5-Si6-Si7	108.20(8)
Si9-Si10	2.358(2)	S6-Si6-Si7	109.54(7)
Si6-C7	1.857(5)	S7-Si8-Si7	108.85(8)
Si7-C8	1.879(6)	S8-Si8-Si7	109.70(8)
Si7-C9	1.877(5)	S5-Si9-Si10	105.43(8)
Si8-C10	1.859(5)	S7-Si9-Si10	105.03(7)
Si9-C11	1.855(5)	S6-Si10-Si9	105.15(7)
Si10-C12	1.852(5)	S8-Si10-Si9	105.55(8)
		C8-Si7-C9	110.9(3)0

(shelx-97 [22]) and drawn using Diamond [23]. The ellipsoids at the non-hydrogen atoms are shown at the 30% probability level.

3.3. Starting materials

Sulfur, selenium, 1.0 M Li[BEt3H] in THF (Super Hydride[®]), Me2SiCl2, Ph2MeSiCl, lithium powder, H2S and NEt3 were commercially available. Cl2MeSi–SiMeCl2 was prepared as described in [24]. THF was distilled from sodium potassium alloy prior to use. Hexane was dried over KOH. All reactions were carried out under argon applying standard Schlenk techniques.

3.4. Synthesis of Me2Si(SiMePh2)2 (1a)

Ph2MeSiCl (7.7 g, 33 mmol) was dissolved in 30 ml THF and lithium powder (0.78 g, 0.11 mol) was added.

Table 6

Crystal data of 2a and 3a as well as data collection and refinement details

	2a	3a
Empirical formula	C8H24S4Si6	C6H18S4Si5
Formula weight	417.05	358.89
Crystal shape	block	block
Temperature (K)	295(2)	293(2)
Crystal color	colorless	colorless
Crystal size (mm3)	$0.37 \times 0.25 \times 0.16$	$0.17 \times 0.11 \times 0.07$
Crystal system	monoclinic	monoclinic
Space group	P21/n	P21/c
Unit cell dimensions		
a (Å)	12.827(2)	8.2255(5)
b (Å)	10.897(1)	15.820(1)
c (Å)	16.449(2)	27.722(2)
β (°)	96.187(7)	90.502(4)
V (Å3), Z	2285.8(5), 4	3607.3(4), 8
Density (calc.,	1.212	1.322
g cm - 3)		
Linear absorption	0.717	0.833
coeff. $(mm-1)$		
Scan method	φ-scans	φ-scans
Absorption correc-	numerical	numerical
tion		
Measured reflections	19 502	21 471
Independent reflec-	3987	5628
tions		
Observed reflections	3270	3481
Rint	0.0406	0.1008
θ range for collec-	1.92 - 25.00	1.95 - 24.00
tion (°)		
Index ranges	$-15 \le h \le 12, -12 \le$	$-9 \le h \le 8, -18 \le$
	$k \le 12, -18 \le l \le 19$	$k \le 18, \ -31 \le l \le 18$
Completeness to	99.2	99.3
θmax (%)		
Number of para-	171	283
meters		
Final R1/wR2 $[I >$	0.0786/0.1668	0.1195/0.1046
$2\sigma(\mathbf{I})$] ^a		
Final R1/wR2 (all	0.0632/0.1572	0.0521/0.0909
data)"	1 000	0.004
Goodness-of-fit (S)	1.098	0.994
Ull F2	and minat	anom Imine 1
fining	geom./mixed	geom./mixed
Max /min a density	0.492/-0.342	0.268/-0.333
(e Å = 3)	0.772/ -0.342	0.200/ -0.355
(0 11 = 5)		

^a R1 = $\Sigma(||Fo| - |Fc||)/\Sigma|Fo|$, wR2 = $[\Sigma w(Fo2 - Fc2)2/\Sigma(wFo2)]1/2$, w = $1/[\sigma2(Fo2) + (aP)2 + bP]$ where P = (Fo2 + 2Fc2)/3.

^b $S = [\Sigma w(Fo2 - Fc2)2]/(n-p)1/2$, n = number of reflections, p = parameters used.

After some time, the stirred reaction mixture started to turn green. After reaction overnight, the deep-green solution of Ph2MeSiLi was slowly transferred by a cannula into a solution of Me2SiCl2 (2.12 g, 16.5 mmol) in THF (20 ml) at -80 °C. After complete addition, the reaction mixture was brought to room temperature and the THF was removed in vacuo. After addition of nhexane (50 ml), the mixture was filtered from precipitated LiCl and the solvent was removed in vacuo yielding 6.4 g (14 mmol, 85%) pure Me2Si(SiMePh2)2 (1a) as an oily residue.

3.5. Synthesis of Me2Si(SiMeCl2)2 (1b)

1a (6.25 g, 13.8 mmol) was dissolved in 20 ml hexane and AlCl3 (8.3 g, 62 mmol) was added. Acetyl chloride (4.4 ml, 62 mmol) was slowly added to this mixture with stirring. After reaction overnight, the upper layer was isolated and the residue extracted with n-hexane (2×10 ml). The combined hexane solutions were concentrated in vacuo at room temperature to yield 2.9 g (10 mmol) pure Me2Si(SiMeCl2)2 (1b) which was checked by NMR spectroscopy.

1b: GC/MS (m/e, rel. int.): 286 (Me4Si335Cl337Cl [M+], 1), 271 ([M+-Me], 1), 249/251 ([M+-Cl], 2), 171 ([Me3Si2Cl2], 18), 156 ([Me2Si2Cl2], 17), 113 ([MeSiCl2], 6), 93 ([Me2SiCl], 29), 73 ([Me3Si], 100).

3.6. Synthesis of Me2Si[SiMe(SBu)2]2 (1c)

Sulfur (64 mg, 2.0 mmol) was added to a mixture of a 1.6-M BuLi solution in hexane (1.25 ml) and THF (2 ml). The sulfur dissolves immediately under formation of BuSLi. 1b (0.14 g, 0.5 mmol) was added to this BuSLi solution. After stirring for 30 min, the solvents were removed in vacuo and the residue was dissolved in hexane (10 ml). After filtration from precipitated lithium chloride evaporation of the solvent yielded pure Me2-Si[SiMe(SBu)2]2 (1c, 0.16 g, 0.32 mmol) which was characterized by NMR spectroscopy (see Table 1).

3.7. Adamantanes (Me2Si)2(SiMe)4E4 (E = S (2a), Se (2b))

1b (0.29 g, 1.0 mmol) was added at 0 °C to a solution of 2.0 mmol Li2E (E = S, Se), prepared from 2.0 mmol elemental E and 4.0 ml of a 1.0 M solution of Li[BEt3H] in THF (Super-Hydride[®]). After stirring for 20 min, the solvents were removed in vacuo and the residue dissolved in 10 ml hexane. After filtration from precipitated lithium salts, the removal of the solvent in vacuo yielded the adamantanes 2a and 2b as colorless crystals (60–70% yield, 2a: m.p.: 174 °C).

The sulfur compound 2a can also be prepared by reaction of 1b with H2S/NEt3 in hexane solution.

2a: GC/MS: 416 ([M+], 68), 401 ([M+-Me], 100), 357 ([Me5Si5S4CH2], 20), 343 ([Me5Si5S4], 17), 311 ([Me5Si5S3], 24), 283 ([Me5Si4S3], 18), 266 ([Me6Si4S2], 10), 251 ([Me5Si4S2], 35), 223 ([Me5Si3S2], 9), 191 ([Me5Si3S], 21), 176 ([Me4Si3S], 9), 165 ([Me3Si2S2], 11), 163 ([Me5Si2S], 8), 131 ([Me5Si2], 24), 116 ([Me4Si2], 18), 73 ([Me3Si], 94).

3.8. Noradamantane (Me2Si)(SiMe)4S4 (3a)

1b (0.29 g, 1.0 mmol) and Cl2MeSi–SiMeCl2 (0.23 g, 1.0 mmol) were dissolved in 40 ml hexane and H2S was bubbled through the solution while NEt3 (1.7 ml, 12 mmol) was added slowly. After 1 h, the mixture was filtered from precipitated [HNEt3]Cl and the solvent was removed in vacuo to yield colorless crystalline 3a in 55% yield, m.p.: 169 °C.

3a: GC/MS: 358 ([M+], 43), 343 ([M+-Me], 41), 283 ([Me5Si4S3], 20), 239 ([Me6Si3S2H], 4), 225 ([Me3-Si3S3], 7), 223 ([Me5Si3S2], 9), 208 ([Me4Si3S2], 14), 193 ([Me3Si3S2], 5), 165 ([Me3Si2S2], 26), 133 ([Me3-Si2S], 12), 73 ([Me3Si], 100).

4. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 199979 for 2a and 199980 for 3a. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

The authors wish to thank the 'Deutsche Forschungsgemeinschaft' and the 'Fonds der Chemischen Industrie' for financial support.

References

- [1] J.J. Vittal, Polyhedron 15 (1996) 1585.
- [2] M. Ribes, J. Olivier-Fourcade, E. Philippot, M. Maurin, J. Solid State Chem. 8 (1973) 195.
- [3] C. Köster, A. Lindemann, J. Kuchinke, C. Mück-Lichtenfeld, B. Krebs, Solid State Sci. 4 (2002) 641.
- [4] B. Eisenmann, J. Hansa, H. Schäfer, Z. Naturforsch. B 40 (1985) 450.
- [5] B. Eisenmann, H. Schäfer, Z. Anorg. Allg. Chem. 491 (1982) 67.
- [6] J.C.J. Bart, J.J. Daly, J. Chem. Soc. Dalton Trans. (1975) 2063.
- [7] A. Haas, R. Hitze, C. Krüger, K. Angermund, Z. Naturforsch. B 39 (1984) 890.
- [8] S.R. Bahr, P. Boudjouk, Inorg. Chem. 31 (1992) 712.
- [9] (a) W. Ando, T. Kadowaki, Y. Kabe, M. Ishii, Angew. Chem. 104 (1992) 84;

(b) W. Ando, T. Kadowaki, Y. Kabe, M. Ishii, Angew. Chem. Int. Ed. Engl. 31 (1992) 59.

- [10] M. Unno, Y. Kawai, H. Shioyama, H. Matsumoto, Organometallics 16 (1997) 4428.
- [11] U. Herzog, G. Rheinwald, J. Organomet. Chem. 628 (2001) 133.
- [12] D. Dakternieks, K. Jurkschat, H. Wu, E.R.T. Tiekink, Organometallics 12 (1993) 2788.
- [13] K. Olsson, Arkiv. Kemi. 26 (1967) 435.

- [14] K. Olsson, Arkiv. Kemi. 26 (1967) 465.
- [15] J.E. Barnes, J.A.W. Dalziel, S.D. Ross, Spectrochim. Acta A 27 (1971) 1247.
- [16] K. Olsson, S.-O. Almqvist, Acta Chem. Scand. 23 (1969) 3271.
- [17] U. Herzog, G. Rheinwald, J. Organomet. Chem. 627 (2001) 23.
- [18] U. Herzog, G. Rheinwald, Organometallics 20 (2001) 5369.
- [19] U. Herzog, G. Roewer, Main Group Met. Chem. 22 (1999) 579.
- [20] M. Lardon, J. Am. Chem. Soc. 92 (1970) 5063.

- [21] crystal clear, Rigaku Corp., 2000.
- [22] G.M. Sheldrick, shelx97 (includes shelxs97, shelxl97, ciftab): programs for crystal structure analysis, Release 97-2, University of Göttingen, Germany, 1997.
- [23] M. Berndt, K. Brandenburg, H. Putz, diamond 2.1: crystal impact GbR, www.crystalimpact.de, Bonn, Germany, 1999.
- [24] R. Lehnert, M. Höppner, H. Kelling, Z. Anorg. Allg. Chem. 591 (1990) 209.